Can an Exponential Function Be Applied to the Asymptotic Density–Size Relationship? Two New Stand-Density Indices in Mixed-Species Forests

Abstract: This study presents two stand-density indices (SDIs) based on exponential density decline as a function of quadratic mean diameter for all species combined in mixed-species forests with 22 species mix grouped in four species groups. The exponential-based density–diameter relationship, as well the density index corresponding to the slope or instantaneous mortality rate parameters, was compared with those based on power-law density–diameter relationship. A dataset of 202 fully stocked circular plots at maximum density was used for fitting the models, and a dataset of 122 circular plots was used for validation stand density index for all species combined of mixed-species stands. The dataset for validation was independent of dataset for model development. The first stand-density index showed a density management graphic (DMG) with a variable intercept and common instantaneous mortality rate, and the second index showed a DMG with common intercept and variable mortality rate. Additionally, the value of the initial density of the fitted line was more realistic than those generated by the potential model for all species combined. Moreover, the density management diagrams showed a curvilinear trend based on the maximum stand density index in graphical log–log scale. The DMGs could be interpreted as forest scenarios based on variable initial density and common management objectives or the same density and different management objectives for forest-rotation periods involving all species combined in mixed-species stands. The fitting of exponential and potential equations for species or species groups showed that the density–size relationships in mixed-species forests should be modeled for all species combined because the disaggregation of mixture species represented a weak tendency for each species or species group and the resultant fitted equations were unrealistic.

Share in your social media
Share on Facebook
0Tweet about this on Twitter
Share on LinkedIn

Leave a Reply

Your email address will not be published. Required fields are marked *